Past Year JEE Questions

Questions

Quetion: 01

Let e_1 and e_2 be the eccentricities of the ellipse,

 $\begin{array}{l} \frac{x^2}{25} + \frac{y^2}{b^2} = 1 \ (b < 5) \ \text{and the hyperbola}, \\ \frac{x^2}{10} - \frac{y^2}{b^2} = 1 \ \text{respectively satisfying } e_1 e_2 = 1. \ \text{If } \alpha \\ \text{and } \beta \ \text{are the distances between the foci of the} \\ \text{ellipse and the foci of the hyperbola} \\ \text{respectively, then the ordered pair } (\alpha, \beta) \ \text{is equal to :} \\ \text{A. (8, 10)} \\ \text{B. (8, 12)} \\ \text{C. } \left(\frac{24}{5}, 10\right) \\ \text{D. } \left(\frac{20}{5}, 12\right) \end{array}$

Solutions

Solution: 01

Explanation

For ellipse $\frac{x^2}{25} + \frac{y^2}{b^2} = 1$ (*b* < 5)

Let e₁ is eccentricity of ellipse

$$\therefore b^2 = 25 (1 - e_1^2) \dots (1)$$

Again for hyperbola

$$\frac{x^2}{16} - \frac{y^2}{b^2} = 1$$

Let e₂ is eccentricity of hyperbola.

$$\therefore b^2 = 16(e_1^2 - 1)$$
(2)

by (1) & (2)

$$25(1 - e1^2) = 16(e1^2 - 1)$$

Now $e_1 \cdot e_2 = 1$ (given)

$$\therefore 25(1 - e_1^2) = 16\left(\frac{1 - e_1^2}{e_1^2}\right)$$

or $e_1 = \frac{4}{5}$ $\therefore e_2 = \frac{5}{4}$

Now distance between foci is 2ae

: distance for ellipse = $2 \times 5 \times \frac{4}{5} = 8 = \alpha$

distance for hyperbola = $2 \times 4 \times \frac{5}{4} = 10 = \beta$

 $\therefore (\alpha, \beta) \equiv (8, 10)$